

2017年高考全国 I 卷数学(文科)参考答案与解析

学而思高考研究中心

1.A

【解析】集合
$$B = \left\{ x \middle| x < \frac{3}{2} \right\}$$
 $A \cup B = \left\{ x \middle| x < 2 \right\}$, $A \cap B = \left\{ x \middle| x < \frac{3}{2} \right\}$

2. B

【解析】标准差是评估稳定程度的数字特征.

【解析】对于 A:
$$i(1+i)^2 = i(1+2i+i^2) = i+2i^2 - i = -2$$

B: $i^2(1-i) = -1+i$
C: $(1+i)^2 = 2i$

B:
$$i^{2}(1-i) = -1+i$$

C: $(1+i)^{2} = 2i$

$$D: i(1+i) = -1+i$$

4. B

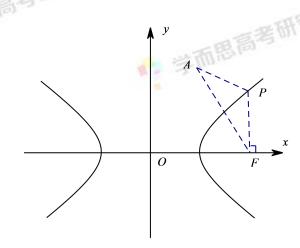
【解析】利用割补可以知道黑色部分为圆的面积的 $\frac{1}{2}$,记事件A为:点落在黑色部分 学而思高考研究

$$P(A) = \frac{\frac{1}{2} \times \pi \times 1^2}{4} = \frac{\pi}{8}$$

5. D

【解析】由圆锥曲线的解析式可知 $a^2 = 1, b^2 = 3, c^2 = 4$

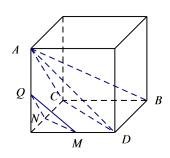
故 F(2,0) ,则 $\triangle APF$ 在边 PF 上的高 $h=x_F-x_A=1$, $\left|PF\right|=3, S=\frac{1}{2}\cdot\left|PF\right|h=\frac{3}{2}$



6. A

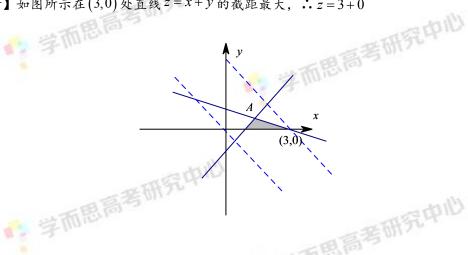
【解析】 对选项 A: 连接 AC 和 CD, ∵ Q,M,N 都是中点,∴ AC // QM,CD // MN 且 $AC \cap CD = C, QN \cap NM = N$, 所以面 QMN // 面 ACD , 而 $AB \cap$ 面

ACD = A , 所以 AB 不平行与面 QMN



7. D

【解析】如图所示在(3,0)处直线z=x+y的截距最大, $\therefore z=3+0$



【解析】
$$f(-x) = \frac{\sin(-2x)}{1-\cos(-x)} = \frac{-\sin 2x}{1-\cos x} = -f(x)$$
 ,所以函数 $f(x)$ 为奇函数,排除 B
$$f\left(\frac{\pi}{2}\right) = 0, f(\pi) = 0$$
 排除 D

当
$$x \to 0$$
, 时 $f(x) > 0$ 排除A,只取C

9. C

【解析】 f(x) 的定义域为(0,2) , $f(x) = \ln x(2-x)$

设内层函数u=x(2-x),则其在(0,1)上单调递增,在(1,2)上单调递减,

: 外层函数 $y = \ln u$ 是单调递增的,

f(x) f(x) f(x) f(x) 上单调递增,f(x) 上单调递减,故 A、B 错误;

 $f(2-x)=\ln(2-x)x=f(x)$ 由此可知 f(x) 关于 x=1 对称,故 C 正确, D 错误.

10.D

【解析】根据题意当 A>1000 时结束程序,所以在 $A \leq 1000$ 进入循环体,所以判断框填 $A \leq 1000$,根据题目要求 n 为偶数,所以步长为 2,因此 n=n+2 .答案为 D 11.B

【解析】

$$\sin B + \sin A (\sin C - \cos C) = \sin (A + C) + \sin A \sin C - \sin A \cos C = \sin C \cos A + \sin A \sin C$$
$$= \sin C (\cos A + \sin A) = 0$$

$$\therefore \sin C \neq 0 , \quad \therefore \cos A + \sin A = 0 , \quad \therefore A = \frac{3\pi}{4} ,$$

由正弦定理可得
$$\sin C = \frac{c}{a} \cdot \sin A = \frac{\sqrt{2}}{2} \times \frac{\sqrt{2}}{2} = \frac{1}{2}$$
,

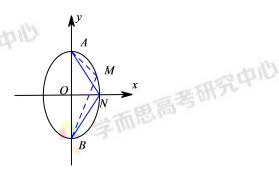
$$\therefore C = \frac{\pi}{6}$$

12A

【解析】

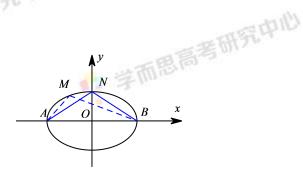
当 m>3 时,如图所示,当M与N点重合时∠AMB的角度最大,∴

$$\angle ANB \geqslant \angle AMB$$
 , $\therefore \angle ANO \geqslant 60^{\circ}$ $\tan \angle ANO = \frac{\sqrt{m}}{\sqrt{3}} \geqslant \sqrt{3}$, $\therefore m \geqslant 9$



当 m < 3 时, 如图所以 \therefore $\angle ANB \geqslant \angle AMB$, \therefore $\angle ANO \geqslant 60^{\circ}$ $\tan \angle ANO = \frac{\sqrt{3}}{\sqrt{m}} \geqslant \sqrt{3}$,

 $\therefore m \leq 1$



由此可知 $m \in (0,1] \cup [9,+\infty)$

【解析】
$$\vec{a} + \vec{b} = (m-1,3)$$
, $\vec{a} + \vec{b} = \vec{a}$ 垂直, $\vec{a} \cdot (\vec{a} + \vec{b}) \cdot \vec{a} = -(m-1) + 6 = 0$, $\vec{m} = 7$ 14. $y = x + 1$

【解析】记
$$f(x) = x^2 + \frac{1}{x}$$
, $f'(x) = 2x - \frac{1}{x^2}$, $f'(1) = 1$, ∴直线方程为 $y - 2 = x - 1$, 即 $y = x + 1$

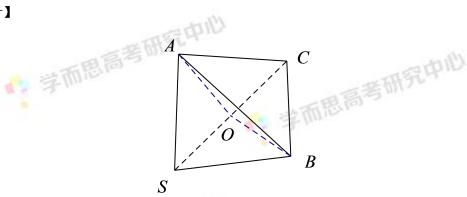
15. $\frac{3\sqrt{10}}{10}$

【解析】
$$: \alpha \in \left(0, \frac{\pi}{2}\right)$$
, $\tan \alpha = 2$, $: \cos \alpha = \frac{\sqrt{5}}{5}$, $\sin \alpha = \frac{2\sqrt{5}}{5}$

$$\therefore \cos\left(\alpha - \frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \left(\cos\alpha + \sin\alpha\right) = \frac{3\sqrt{10}}{10}$$

 16.36π

【解析】



如图,设球半径为r,已知SC为球直径, $\therefore SC$ 中点为球心O,

$$\therefore SA \perp AC$$
, $SB \perp BC$, $OA = OB = OC = OS = r$,

$$\mathbb{R}$$
: $SA = AC$, $SB = BC$, $\therefore SA = AC = SB = BC = \sqrt{2}r$, $AO \perp SC$

又: 平面 $SCA \perp$ 平面 SCB, 平面 $SCA \cap$ 平面 SCB = SC, $AO \perp SC$, $AO \subset$ 平面 SCA

:
$$V_{S-ABC} = V_{A-SBC} = \frac{1}{3} |AO| S_{\triangle BCS} = \frac{1}{3} \cdot r \cdot \frac{1}{2} \cdot \sqrt{2} r \cdot \sqrt{2} r = \frac{1}{3} r^3 = 9$$
,

$$\therefore r = 3$$
,球面积 $S_{\text{st}} = 4\pi r^2 = 36\pi$

17.

【解析】(1)设 $\{a_n\}$ 通项公式为 $a_n = a_1q^{n-1}$,其中q为公比

设
$$\{a_n\}$$
 通项公式为 $a_n = a_1 q^{n-1}$,其中 q 为公比
∴ $a_1 + a_2 = a_1 + a_1 q = 2$,且 $a_1 + a_2 + a_3 = 2 + a_1 q^2 = -6$
解得 $a_n = q = -2$

$$a_n = (-2) \times (-2)^{n-1} = (-2)^n$$

(2)
$$S_n = \frac{a_1(1-q^n)}{1-q} = \frac{-2[1-(-2)^n]}{1-(-2)} = -\frac{(-2)^{n+1}+2}{3}$$

$$\therefore S_{n+1} = -\frac{(-2)^{n+2}+2}{3}, \quad S_{n+2} = -\frac{(-2)^{n+3}+2}{3}$$

$$\therefore S_{n+1} + S_{n+2} = -\frac{(-2)^{n+2}+2}{3} - \frac{(-2)^{n+3}+2}{3} = \frac{4}{3}[(-2)^n - 1]$$

$$\mathbb{Z}$$
: $2S_n = -\frac{2(-2)^{n+1} + 4}{3} = \frac{4}{3}[(-2)^n - 1]$

$$\therefore S_{n+1} + S_{n+2} = 2S_n$$
, 即 S_{n+1} , S_n , S_{n+2} 成等差数列

18.

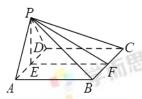
【解析】(1)证明: ∵∠BAP = ∠CDP = 90°

 $\therefore PA \perp AB$, $PD \perp CD$

 \mathbb{Z} : AB // CD, $\therefore PD \perp AB$

又: $PD \cap PA = P$, $PD \setminus PA \subset$ 平面 PAD

∴平面 PAB ⊥ 平面 PAD



取 AD 中点 E , BC 中点 F , 连接 PE , EF , PF

- ∵ *AB <u>#</u>CD*
- :.四边形 ABCD 为平行四边形
- ∴ *EF* <u>#</u> *AB*

由(1)知, AB ⊥ 平面 PAD

学而思高考研究中心 :. EF ⊥平面 PAD ,又 PE 、 AD ⊂ 平面 PAD

 $\therefore EF \perp PE , EF \perp AD$

 $\nabla : PA = PD$, $\therefore PE \perp AD$

∴ PE、EF、AD两两垂直,四边形 ABCD 为矩形

 $\Sigma : EF \cap AD = E$

∴ PE ⊥ 平面 ABCD, 即 PE 为四棱锥 P - ABCD 的高

设
$$PA = PD = AB = DC = a$$
 , $\therefore AD = \sqrt{2}a$, $PE = \frac{\sqrt{2}}{2}a$

所以四棱锥体积为: $V = \frac{1}{3} \cdot a \cdot \sqrt{2}a \cdot \frac{\sqrt{2}}{2}a = \frac{1}{3}a^3 = 8$, 得 a = 2

$$\therefore S_{\triangle ABP} = S_{\triangle DCP} = S_{\triangle APD} = \frac{1}{2}a^2 = 2$$

$$\triangle PBC + BC = PC = PB = \sqrt{2}a = 2\sqrt{2}$$

∴ 易求
$$S_{\triangle PBC} = 2\sqrt{3}$$

∴四棱锥
$$P-ABCD$$
 的侧面积为 $S=S_{\triangle ABP}+S_{\triangle DCP}+S_{\triangle APD}+S_{\triangle PBC}=6+2\sqrt{3}$

【解析】(1)
$$\overline{i} = \frac{1+2+\dots+16}{16} = 8.5$$

$$\therefore r = \frac{\sum_{i=1}^{16} (x_i - \overline{x})(i - 8.5)}{\sqrt{\sum_{i=1}^{16} (x_i - \overline{x})^2} \sqrt{\sum_{i=1}^{16} (i - 8.5)^2}} = \frac{\sum_{i=1}^{16} (x_i - \overline{x})(i - 8.5)}{4s \cdot \sqrt{\sum_{i=1}^{16} (i - 8.5)^2}} = \frac{-2.78}{4 \times 0.212 \times 18.439} \approx 0.178$$

∴可以认为零件的尺寸不随生产过程的进行而系统地变大或变小

(2) (i) $\overline{x} - 3s = 9.97 - 3 \times 0.212 = 9.334$, $\overline{x} + 3s = 9.97 + 3 \times 0.212 = 10.606$ $x_{13} = 9.22$,在 $(\bar{x} - 3s, \bar{x} + 3s)$ 之外,所以需对当天的生产过程进行检查

(ii) 由 (i), 离群值为 $x_{13} = 9.22$

剔除数据之后:
$$\bar{x} = \frac{9.97 \times 16 - 9.22}{15} = 10.02$$
.

$$s^{2} = [(9.95 - 10.02)^{2} + (10.12 - 10.02)^{2} + (9.96 - 10.02)^{2} + (9.96 - 10.02)^{2} + (9.96 - 10.02)^{2} + (10.01 - 10.02)^{2} + (9.92 - 10.02)^{2} + (9.98 - 10.02)^{2} + (10.04 - 10.02)^{2} + (10.02 - 10.02)^{2} + (10.13 - 10.02)^{2} + (10.02 - 10.02)^{2} + (10.04 - 10.02)^{2} + (10.05 - 10.02)^{2} + (9.95 - 10.02)^{2}] \times \frac{1}{15} \approx 0.008$$

20.

$$\therefore s = \sqrt{0.008} \approx 0.09$$
20. 【解析】(1) 设 A , B 两点的坐标为 (x_1, y_1) , (x_2, y_2) , 若 $x_1 = x_2$, 则 $y_1 = \frac{x_1^2}{4} = \frac{x_2^2}{4} = y_2$, A , B 重合,所以 $x_1 \neq x_2$.

由题设,
$$x_1 + x_2 = 4$$
, 则直线 AB 的斜率为 $k = \frac{y_1 - y_2}{x_1 - x_2} = \frac{\frac{x_1^2}{4} - \frac{x_2^2}{4}}{x_1 - x_2} = \frac{x_1 + x_2}{4} = 1$.

(2) 由(1), 可设
$$AB$$
 的方程为 $y=x+b$, 将 $y=x+b$ 代入 $y=\frac{x^2}{4}$, 整理得

$$x^2-4x-4b=0,$$

由
$$\Lambda = 16 + 16h > 0$$
. 得 $h > -1$.

由韦达定理,
$$x_1 + x_2 = 4$$
, $x_1x_2 = -4b$

$$x^2-4x-4b=0$$
,由 $\Delta=16+16b>0$,得 $b>-1$.由 韦达定理, $x_1+x_2=4$, $x_1x_2=-4b$.设点 $M\left(x_0,y_0\right)$,因为 $y'=\frac{2x}{4}=\frac{x}{2}$,所以点 M 处的切线的斜率为 $\frac{x_0}{2}$.

因为
$$M$$
处的切线与 AB 平行,所以 $\frac{x_0}{2}=1$,得 $x_0=2$,于是 $y_0=\frac{x_0^2}{4}=1$.

申
$$AM \perp BM$$
, 有 $\overline{AM} \cdot \overline{BM} = (2 - x_1, 1 - y_1) \cdot (2 - x_2, 1 - y_2)$

$$= (2 - x_1)(2 - x_2) + (1 - x_1 - b)(1 - x_2 - b)$$

$$= 2x_1x_2 - (3 - b)(x_1 + x_2) + b^2 - 2b + 5$$

$$= -8b - 4(3 - b) + b^2 - 2b + 5$$

$$= b^2 - 6b - 7$$

$$= 0$$

解得b=7 (-1舍). 所以,直线 AB 的方程为 y=x+7.

单调增.

a = 0 时, $f'(x) = 2e^{2x} > 0$, f(x) 在 R 上单调增

a > 0 时, $2e^{x} + a > 0$, $e^{x} - a = 0$, $a = \ln a$.

当 $x < \ln a$ 时, f'(x) < 0, f(x) 单调减; 当 $x > \ln a$ 时, f'(x) > 0, f(x) 单调 增.

综上, 当
$$a < 0$$
 时, $f(x)$ 在 $\left(-\infty, \ln\left(-\frac{a}{2}\right)\right)$ 上单调递减,在 $\left(\ln\left(-\frac{a}{2}\right), +\infty\right)$ 上单

调递增:

当a=0时, f(x)在 $(-\infty,+\infty)$ 上单调递增;

当a>0时,f(x)在 $(-\infty, \ln a)$ 上单调递减,在 $(\ln a, +\infty)$ 上单调递增.

(2)
$$a < 0$$
 时,由(1)知, $f(x)$ 在 $\left(-\infty, \ln\left(-\frac{a}{2}\right)\right)$ 上单调递减,在 $\left(\ln\left(-\frac{a}{2}\right), +\infty\right)$ 上单调递增,

$$\text{FT VL}, \quad f\left(x\right)_{\min} = f\left(\ln\left(-\frac{a}{2}\right)\right) = \left(-\frac{a}{2}\right)\left(-\frac{a}{2} - a\right) - a^2\ln\left(-\frac{a}{2}\right) = a^2\left(\frac{3}{4} - \ln\left(-\frac{a}{2}\right)\right).$$

因此
$$f(x) \ge 0$$
, 只需 $\frac{3}{4} - \ln\left(-\frac{a}{2}\right) \ge 0$, 解得 $-2e^{\frac{3}{4}} \le a < 0$.

$$a = 0 \text{ B}^{1}$$
, $f(x) = e^{2x} > 0$.

$$a > 0$$
 时,同理由(1)可知, $f(x)_{min} = f(\ln a) = a(a-a) - a^2 \ln a = -a^2 \ln a$.

所以, 只需
$$-a^2 \ln a \ge 0$$
, 解得 $0 < a \le 1$.

综上,
$$a$$
 的取值范围是 $\begin{bmatrix} -2e^{\frac{3}{4}},1 \end{bmatrix}$.

22.

学而思高考研究中心 【解析】(1) a = -1时,直线l的方程为x + 4y - 3 = 0.

曲线 C 的标准方程是 $\frac{x^2}{\alpha} + y^2 = 1$,

则 C 与 l 交点坐标是 (3, 0) 和 $\left(-\frac{21}{25}, \frac{24}{25}\right)$

(2) 直线l一般式方程是x+4y-4-a=0.

设曲线 C上点 $p(3\cos\theta, \sin\theta)$.

则
$$P$$
 到 l 距离 $d = \frac{|3\cos\theta + 4\sin\theta - 4 - a|}{\sqrt{17}} = \frac{|5\sin(\theta + \varphi) - 4 - a|}{\sqrt{17}}$, 其中 $\tan\varphi = \frac{3}{4}$.

依题意得:
$$d_{\text{max}} = \sqrt{17}$$
, 解得 $a = -16$ 或 $a = 8$

【解析】 (1) 当 a=1 时, $f(x)=-x^2+x+4$,是开口向下,对称轴 $x=\frac{1}{2}$ 的二次函数.

$$g(x) = |x+1| + |x-1| = \begin{cases} 2x, & x > 1 \\ 2, & -1 \le x \le 1, \\ -2x, & x < -1 \end{cases}$$

当
$$x \in (1, +\infty)$$
 时,令 $-x^2 + x + 4 = 2x$,解得 $x = \frac{\sqrt{17} - 1}{2}$

g(x)在 $(1,+\infty)$ 上单调递增,f(x)在 $(1,+\infty)$ 上单调递减

∴此时
$$f(x) \ge g(x)$$
解集为 $\left[1, \frac{\sqrt{17}-1}{2}\right]$.

当
$$x \in [-1, 1]$$
时, $g(x) = 2$, $f(x) \ge f(-1) = 2$.

当 $x \in (-\infty, -1)$ 时,g(x)单调递减,f(x)单调递增,且g(-1)=f(-1)=2.

学师心

学而思高考研究中心

综上所述,
$$f(x) \ge g(x)$$
解集 $\left[-\frac{1}{2}, \frac{\sqrt{17}-1}{2}\right]$.

(2) 依题意得: $-x^2 + ax + 4 \ge 2$ 在 [-1, 1] 恒成立.

即
$$x^2 - ax - 2 \le 0$$
 在 $[-1, 1]$ 恒成立.

则只须
$$\begin{cases} 1^2 - a \cdot 1 - 2 \leq 0 \\ (-1)^2 - a(-1) - 2 \leq 0 \end{cases}$$
, 解出: $-1 \leq a \leq 1$.

故 a 取值范围是[-1,1].

学而思高考研究中心